## Supplemental Information for

## Quaternary dynamics of $\alpha$ B-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus

Andrew J. Baldwin<sup>1</sup>, Gillian R. Hilton<sup>2</sup>, Hadi Lioe<sup>2</sup>, Claire Bagnéris<sup>3</sup>, Justin L.P. Benesch<sup>2</sup>,

Leawis E. Kay<sup>1</sup>

## Derivation of Eq. 1 of the text

Consider first the following equilibrium,  $A \xleftarrow{k_{AB}}{k_{BA}} B \xleftarrow{k_{BC}}{k_{CB}} C$ , with  $k_{AB} = k_{CB} = 10 \text{ s}^{-1}$  and  $k_{BA} = k_{BC} = 100 \text{ s}^{-1}$ . The corresponding free energy landscape is shown below (black),



We can write,

$$\frac{d[A]}{dt} = -k_{AB}[A] + k_{BA}[B]$$
(A1.1)

$$\frac{d[B]}{dt} = k_{AB}[A] - k_{BA}[B] + k_{CB}[C] - k_{BC}[B]$$
(A1.2)

$$\frac{d[C]}{dt} = -k_{CB}[C] + k_{BC}[B]$$
(A1.3)

In the steady state limit (equilibrium conditions, or when the population of state B is much lower than that of A or C)  $\frac{d[B]}{dt} = 0$  so that  $[B] = \frac{k_{AB}[A] + k_{CB}[C]}{k_{BA} + k_{BC}}$ . Substituting this into the expression for  $\frac{d[C]}{dt}$  above gives:  $\frac{d[C]}{dt} = -\frac{k_{CB}k_{BA}}{k_{BA} + k_{BC}}[C] + \frac{k_{AB}k_{BC}}{k_{BA} + k_{BC}}[A]$  (A1.4)

 $\kappa_{BA} + \kappa_{BC} - \kappa_{BA} + \kappa_{BC}$ 

Thus, if one were to 'model' this three-state process as a two-step equilibrium,  $A \xleftarrow{k'_{AC}}{k'_{CA}} C$ , (as shown by the 'red' profile above) with

$$\frac{d[C]}{dt} = -k'_{CA}[C] + k'_{AC}[A]$$
(A1.5)

it follows from Eqn. A1.4 that

$$k_{AC}' = \frac{k_{AB}k_{BC}}{k_{BA} + k_{BC}} \tag{A1.6}$$

$$k_{CA}' = \frac{k_{CB}k_{BA}}{k_{BA} + k_{BC}}$$
(A1.7)

From Eqs. (A1.6) and (A1.7) it is clear that  $k'_{AC} < k_{AB}$ ,  $k_{BC}$  and that  $k'_{CA} < k_{BA}$ ,  $k_{CB}$  (see above figure). Thus the 3-state energy landscape is more rugged, with individual activation barriers lower than the 'equivalent' 2-state profile. Starting from the 'Bound, Unpaired' state of Fig. S3B, and using Eq.

(A1.6), the rate constant for removal of both flaps is given by  $\frac{k_{flap}^-k_{flap}^-}{(k_{flap}^-+k_{flap}^+)}$  which we have shown to

be equal to  $k_e^-$  (Figure 4A).

The rates,  $k_e^-$ ,  $k_{e+d}^-$  and  $k^+[P_1]$ , derived from the MS measurements can be related to the microscopic NMR rates  $k_{flap}^+$  and  $k_{flap}^-$  using the results of the derivation above

$$k_{e}^{-} = \frac{k_{flap}^{-} k_{flap}^{-}}{k_{flap}^{-} + k_{flap}^{+}}$$
(A1.8)

$$k_{e+d}^{-} = k_{e}^{-} \exp\left(\frac{\Delta G_{d}}{RT}\right)$$
(A1.9)

$$\Delta G_{e} = -RT \ln \frac{k^{+}[P_{1}]}{k_{e}^{-}}$$
(A1.10)

$$\Delta G_{e+d} = -RT \ln \frac{k^+ [P_1]}{k_{e+d}^-}$$
(A1.11)

The microscopic association constant,  $\,k_{
m int}^{\scriptscriptstyle +}[P_1]$  , in Figure 4B and Figure S3 is given by

$$k_{\text{int}}^{+}[P_1] = k^{+}[P_1] \frac{k_{flap}^{+} + k_{flap}^{-}}{k_{flap}^{+}}$$
(A1.12)

following along the same lines as for the derivation of  $k_e^-$  in terms of  $k_{flap}^-$  and  $k_{flap}^+$  above. Here  $k_{int}^+[P_1]$  is the pseudo first order rate constant for the formation of the 'intermediate' state where the incoming monomer is held to the oligomer by a single C-terminal interaction.



**Figure S1**. <sup>1</sup>H-<sup>13</sup>C methylTROSY correlation spectra of U-<sup>2</sup>H,Ile-[<sup>13</sup>CH<sub>3</sub>-δ1] labelled αBcrystallin as a function of temperature. **A** – MethylTROSY spectra at 50°C and 20°C. The intensity of the resonances from Ile159 and 161 decrease with temperature due to exchange effects as discussed in the text. By contrast, the remaining relatively broad resonances become more intense with temperature, consistent with the reduction in overall correlation time of the molecule that comes with increased thermal energy. The peak positions do not vary significantly, demonstrating that the hydrophobic core of the protein does not undergo a substantial rearrangement as the ambient temperature is raised. **B** - The locations of the Ile δ1methyl groups are indicated on the dimeric structure of a truncated αB-cystallin (1). Isoleucine side chains are found both on the dimeric interface and within the β-sheet core of the monomers.

| UniProtKB         |              |               |                                                                            |                          |                         |     |
|-------------------|--------------|---------------|----------------------------------------------------------------------------|--------------------------|-------------------------|-----|
| Accession         | n Entry name | )             | 8                                                                          | 139                      | N140                    |     |
| { <b>P02511</b> } | CRYAB_EUM    | LN 68         | MRLENDRFSVHLDVKHFSPEELKVKVLGDVTEVHGKHEERQDEHGFTSREFHRETRTPADVDPLTT         | i <mark>S</mark> SLSSDEV | /LT7 <mark>N</mark> GP  | 148 |
| Q5R9K0            | CRYAB_POS    | AB 68         | NRLEKORFEVNLDVKHFSPEELKVKVLGDVIEVHGKHBERODEHGFIEREFHRKYRIPADVDPLTI         | Selsedgy                 | LTY <mark>n</mark> gp   | 148 |
| Q60BG8            | CRYAB_MACE   | A 68          | NRLEKORFSVNLDVKHFSPEELKVKVLGDVIEVEGKHEERQDEEGFISREFERKYRVPADVDPLTI         | SELEEDGV                 | (TLANCE)                | 148 |
| P41316            | CRYAB_RABI   | ET <b>5</b> 8 | NRLERORFSVMLDVKHFSPEELKVKVLGDVIEVHGKHEERODEHGFISREFHRKYRIPADVDPLTI         | SSLSSDGV                 | (LTY <mark>n</mark> gp  | 146 |
| P05811            | CRYAB_MESI   | NU 68         | NRNERORFSVNLDVKHFSPEELKVKVLGDVVEVHGKHEERODEHGFIGREFBRKVRIPADVDPLTI         | 1 <mark>5</mark> 5LSSDGW | (LTY <mark>n</mark> gp  | 140 |
| P23928            | CRYAB_RAT    | 68            | NRMERORF EVALLOAKHF SPEELK VKVLGDVI EVAGKHBERODEAGFI EREFARKYR I PADVDPLTI | Selsedgy                 | 'LTV <mark>n</mark> gp  | 148 |
| Q9EPT3            | CRYAB_SPA    | 7D 68         | NRMERORLSVMLDVKHFSPEELKVKVLGDVIEVHGKHEERQDEHGFISREFHRKYRIPADVDPLTI         | SELSEDGV                 | (TLA <mark>N</mark> CD) | 148 |
| P23927            | CRYAB_MOUR   | SE 58         | NRLEKDRFSVALDVKHFSPEELKVKVLGDVIEVHGKHEERODEHGFISREFHRKYRIPADVDPLTI         | SSLEEDGV                 | (TLANCE)                | 146 |
| P02510            | CRYAB_BOVI   | CH 58         | NRLERORFSVMLDVKHPSPEELKVRVLÆDVIEVHEKHEERODEHGFISREFHRKYRIPADVDPLAI         | SSLSSDGW                 | ltta <mark>n</mark> gd  | 149 |
| 078286            | CRYAB_PIG    | 68            | NRLEKORFØVNLDAKHFSPEELKAKALGDAIEVEGKHEERODEEGFIEREFERKARIPADADPLTI         | 1 <mark>S</mark> SLSSDGV | /LTV <mark>n</mark> gp  | 148 |
| Q5ENY9            | CRYAB_SHEI   | EP 68         | vrlekorf svaldvkhfspeelkvkvlgdvievagkheergdeagfisrefarkyripadvdplti:       | 2 <mark>SELSEDGW</mark>  | 'LTH <mark>n</mark> gp  | 148 |
| Q05557            | CRYAB_ANAL   | PL 67         | NRLEKOKFEVNLOVKHPSPEELKVKVLEDNVEIHEKHEERODEHGFIAREFNRKYRIPADVDPLTI:        | 2 <mark>S</mark> SLSLDG% | (LTY <mark>SAP</mark>   | 147 |
| Q05713            | CRYAB_CHIC   | CK 67         | NRLERORFSVMLDVKHPSPEELKVKVLGDNIEIHGKHEERQDEHGFLAREFSRKYRIPADVDPLTI         | 1 <mark>S</mark> SLSLDGV | LTY <mark>SAP</mark>    | 147 |
| 091312            | CRYAB_RAM    | CA 66         | NRLEKOKFEINLDVKHFSPEELKVKVEGOFIEIHGKHKERODEHGYVERDFORRYKIPVDVDPLBI         | 1 <mark>SSLSPDG</mark> W | LTV <mark>C</mark> GP   | 146 |
| P02512            | CRYAB_SQUA   | AC 70         | LRLDRDRFAIHLDVKHFTPEELRVKILGDFIEVQAQHEERQDE8GYVSREF8RKYKVPAGVDPLVI         | 1 <mark>C</mark> 9LSADGV | /LTI <mark>T</mark> GP  | 150 |
|                   |              |               |                                                                            |                          |                         |     |
| P24622            | CRYAR_MOUL   | SE \$7        | VRSDRDRFVIFLDVKHFSPEDLTVKVLEDFVEIHERHNERQDDBGVISREFERRYRLPSNVDQSAL         | CSLSADGE                 | ltp <mark>s</mark> gp   | 167 |
| P02497            | CRYAA_MEEJ   | AU 87         | VREORDEFVIFLDVEHFEPEDLTVEVLEDFVEIHGEHNERODDHGYIEREFHRRYRLPENVDQEAL         | ICSLEADCH                | LTF <mark>s</mark> gp   | 167 |
| P24623            | CRYAA_RAT    | 87            | VRSDRDKFVIFLDVKHFSPEDLTVKVLEDFVEIHGKHNERODDHGYISREFHRRYRLPSNVDQSALS        | CSLSADGH                 | ltf <mark>s</mark> gp   | 167 |
| P58281            | CRYAA_CAVE   | PO 54         | VRSORDKFVIFLDVKHF3PEDLTVKVQEDFVEIHGKHNERQDD3GYISREFHRRYKLPSNVDQ3ALS        | C SLSADGR                | ltf <mark>s</mark> gp   | 144 |
| P02493            | CRYAA_RABI   | ET 54         | VRSORDEFVIFLDVKHFSPEDLTVKVQEDFVEIHERHNERQDDBGVISREFERRYRLPSRVDQSAL         | I <mark>C</mark> SLSADGN | ltf <mark>s</mark> gp   | 144 |
| P68287            | CRYAA_GAL    | CR 64         | VRSORDEFVIFLDVEHFSPEDL/TVEVQEDFVEIHGEHNERQDD3GYIGREF3RRYRLPSEVDQGALS       | I <mark>C</mark> SVSADGH | LTF <mark>s</mark> sp   | 144 |
| P02470            | CRYAA_BOVI   | EN 64         | VRSDRDKFVIFLDVKHFSPEDLTVKVQEDFVEIHGKHNERQDDHGYISREFHRRYRLPSNVDQSALA        | CSLSADGH                 | ltf <mark>s</mark> gp   | 144 |
| P02478            | CRYAA_BORS   | 9E 64         | VRSORDKFVIFLDVKHF3PEDLTVKVQEDFVEIHGKHNERQDD3GYISREFBRRYKLPSNVDQTALS        | I <mark>C</mark> 978ADG8 | iltf <mark>s</mark> gp  | 144 |
| P68288            | CRYAA_CAM    | FA 54         | VRSDRDRFVIFLDVKHPSPEDLTVKVLEDFVEIHURHNERODDHGVISREFHRRYRLPSRVDQSALS        | I <mark>C</mark> SLSADGN | ltf <mark>s</mark> gp   | 144 |
| P60282            | CRYAA_FELC   | CA 64         | VRSORDRFVIFLDVKHFSPEDL/TVKVLEDFVEIHERHNERODDEGVISREFERRYRLPSNVDQSALS       | I <mark>C</mark> SLSADGN | LTF <mark>s</mark> gp   | 144 |
| P02489            | CRYAA_HUN2   | AN 64         | VRSORDKFVIFLDVKHFSPEDLTVKVQODFVEIHGKHNERQDDHGYISREFHRRYRLPSNVDQSALS        | CSLSADGH                 | ltf <mark>c</mark> gp   | 144 |
| P02498            | CRYAA_MACI   | WU 54         | VRSORDKFVIFLDVKHF3PEDLTVKVQODFVEIHGKHNERQDD3GYISREFBRRYKLPSNVDQ3ALA        | CSLSADGE                 | ltf <mark>s</mark> gp   | 143 |
| P02498            | CRYAN_LOX    | AF 64         | VRSORDQFVILLDVKHPSPEDLTVKVQODFVEIHHKHNERQDDHGYISREFHRKYRLPSNVDQSALS        | CSLSADER                 | ltp <mark>c</mark> bp   | 144 |
| P02502            | CRYAN_NACE   | RU 64         | VRSORDEFVIFLDVEHFSPEDLTVEVLDDFVEIHEEHSERQDDBGVISREFBRRYRLPSEVDQGAIS        | CSLSADGN                 | ltf <mark>s</mark> gp   | 144 |
| P02504            | CRYAA_CHIC   | CR 64         | VRSDRDKFTIMLDVKHFSPEDLSVKIIDDFVEIHGKHSERQDDHGYISREFHRRYRLPANVDQSAI         | C9L89DGH                 | ltf <mark>s</mark> gp   | 144 |
| P02505            | CRYAA_RHE    | NH 64         | VRSDREKFTINLDVKHFSPEDLSVKIIDDFVEIHGKHSERODDSGYISREFERRYKLPSNVDQSAI         | COLSODG                  | ltf <mark>s</mark> gp   | 144 |

Figure S2. Sequence alignment of  $\alpha$ -crystallins identify sites for introduction of cysteine.

The core  $\alpha$ -domain for 31  $\alpha$ -crystallins from different species were aligned using ClustalW (2), with all cysteine residues highlighted in bold. Cysteine residues are found in only two positions, corresponding to S135 and N146 in human  $\alpha$ B-crystallin (red and yellow stripes). These two residues are both on the exterior of the protomer (1, 3, 4). S135 and N146 are thus good candidates for mutation to cysteine and subsequent modification with the MTSL paramagnetic spin label, without causing unwanted structural perturbation.



Figure S3. NMR relaxation dispersion measurements probing ms time-scale exchange.

(A) Single quantum methyl <sup>13</sup>C CPMG relaxation dispersion curves (5) showing the variation of the exchange contribution to the effective transverse carbon relaxation rate,  $R_2^{ex}$ , obtained by taking the difference between the measured  $R_2^{eff}$  and the exchange independent intrinsic rate  $R_2^{\infty}$ , as a function of CPMG pulsing frequency  $v_{CPMG}$ . Data are shown for I159 and I161 at pH 5 and pH 9, and at temperatures between 30°C and 50°C, as individually indicated. (B) The combined mass spectrometry and NMR spectroscopy data allows construction of free energy surfaces describing the association of an  $\alpha$ B-crystallin monomer to a growing oligomer at the pH and temperature values indicated. The landscape is constructed using Eqs. given above. (C) The corresponding two state free energy surfaces obtained from using mass spectrometry data alone. **Table S1**. Methyl transverse proton relaxation rates,  $R_2$ , measured on  $\alpha$ B-crystallin cysteine mutant samples, N146C and S135C. Measurements were made for the methyl residues indicated with MTS label, without MTS label and when mixed with unlabelled protein with the mixing ratios [unlabelled/labelled] indicated. The magnitude of the PRE effect is obtained by taking the difference between the +MTSL and -MTSL  $R_2$  rates.

| peak     | N146 proton $R_2 / s^{-1}$ |                |             | S135 proton R <sub>2</sub> / s <sup>-1</sup> |                |                |  |
|----------|----------------------------|----------------|-------------|----------------------------------------------|----------------|----------------|--|
|          | -MTSL                      | +MTSL          | mixed [6/1] | -MTSL                                        | +MTSL          | mixed [1/1]    |  |
| lle161δ  | 7.1 ± 1.1                  | 20.7 ± 0.9     | 10.1 ± 1.3  | 5.8 ± 1.1                                    | 46.7 ± 2.9     | 26.8 ± 1.6     |  |
| lle159δ  | 6.6 ± 1.2                  | 19.1 ± 1.5     | 8.4 ± 1.4   | 5.7 ± 1.1                                    | 45.5 ± 3.3     | 30.8 ± 1.2     |  |
| Val169γ1 | $6.9 \pm 0.6$              | $16.8 \pm 0.4$ | 8.7 ± 0.7   | $6.7 \pm 0.6$                                | $36.5 \pm 2.4$ | 18.7 ± 0.4     |  |
| Val169γ2 | 9.7 ± 0.8                  | 21.7 ± 1.2     | 10.7 ± 0.8  | 9.6 ± 0.7                                    | 35.3 ± 0.4     | $20.9 \pm 0.9$ |  |

**Table S2.** Ground state thermodynamic parameters, activation parameters (denoted by \*) and chemical shifts obtained from a global fit of <sup>13</sup>C relaxation dispersion profiles (from I159/I161) to a two-state exchange mechanism as described above. The populations of each state and rates of interconversion were assumed to follow Arrhenius behaviour and the chemical shifts were assumed to have a linear temperature dependence. The thermodynamic/activation parameters are defined as  $\Delta X_{GE}=X_E-X_G$  (X=H, S) with E and G the excited and ground states respectively.

|                                                                     | pH 5        | рН 9          |
|---------------------------------------------------------------------|-------------|---------------|
| ∆H <sub>GE</sub> (kJ mol⁻¹)                                         | 123 ± 5     | 72 ± 20       |
| ∆S <sub>GE</sub> (J mol⁻¹ K⁻¹)                                      | 357 ± 10    | 186 ± 20      |
| ∆H <sub>GE</sub> <sup>*</sup> (kJ mol⁻¹)                            | -30.9 ± 0.1 | 108.5 ± 0.1   |
| ∆S <sub>GE</sub> <sup>*</sup> (Jmol <sup>-1</sup> K <sup>-1</sup> ) | -155 ± 0.1  | 285.6 ± 0.5   |
| Δ <i>ϖ</i>   lle161δ (ppm) 30°C                                     | 1.0 ± 0.4   | $1.5 \pm 0.6$ |
| Δ <i>ϖ</i>   Ile159δ (ppm) 30°C                                     | 2.6 ± 1.0   | $2.3 \pm 0.9$ |
|                                                                     | 1           |               |

## References

- 1. Laganowsky A, et al. (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19(5):1031-1043
- 2. Chenna R, et al. (2003) Multiple sequence alignment with the Clustal series of programs. *Nucleic Acids Res* 31(13):3497-3500.
- 3. Bagneris C, et al. (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392(5):1242-1252.
- 4. Jehle S, et al. (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. *Nat Struct Mol Biol* 17(9):1037-1042.
- 5. Lundstrom P, Vallurupalli P, Religa TL, Dahlquist FW, & Kay LE (2007) A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. *J Biomol NMR* 38(1):79-88.